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Abstract-This paper introduces a new derivation rule by means of which two new stress rates are
defined. Furthermore. the paper compares five stress rates; Jaumann's. Truesdell's, Green-Naghdi's.
Sowe.-rby--chu·s and Durban-Baruch's, for simple she.-ar. Elastic. dastic-perfeclly plastic and e1astic­
plastic hardening (isotropic. kinematic. and combined) mate.-rial models are considered. Different
solutions ha\'e already been published for these cases. eltcept for Sowerby·-ehu and Durban-Baruch
time derivatives. Using the.- new derivation rule the new rate form of the hyperelastic Doyle-Ericksen
formula is obtained. Taking advantage of the Sowerby-Chu stress rate a new constitutive equation
for hypoelastic material is given.

INTRODUCTION

One important field of research of constitutive equations is the investigation of stress rates.
Different stress rates have been analysed by many authors. Most of the investigations
included homogeneous large deformation problems like pure tension. simple shear (Moss.
1984; Sowerby and Chu. 1984; Johnson and Bammann. 1984; Atluri. 1984b; Reed and
Atluri. 1983; Dienes. 1979; Daf~llias. 191D; Lee ('I al.. 1983; Nagteg'lal and deJong. 1982;
Key. 19S4. using classical stress rates (Jaumann. Truesdell. Oldroyd. Colter-Rivlin. Green­
Naghdi) and their modi lied versions for the solutions to constitutive equations. The solu­
tions were mostly obtained for simple hypoclHstic (Sowerby Hnd Chu. 1984; Atluri. 1984b;
Reed and Atluri, 1983; Dienes. 1979; Truesdell. 1955; Key. 1984; Reed Hnu Atluri. 1985.
rigid plastic isotropic (Lee el al,. 1983; Nagtegaal Hnu de Jong. 1982). and kinematic
hardening (Daf~t1ias. 1983; Lee ('I uf.• 1983; Nagtegaal and de Jong. 1982; Reed and
Atluri. 1985; Paulun and Pecherski. 1985). as well as clastic-plastic isotropic and kinematic
hardening (Johnson and Bamnmnn. 1984; Atluri. 1984b ; Key. 1984) materials. The elastic­
ideally plastic isotropic material was investigated by Moss (1984) using the Prandtl-Rellss
flow rule. Conclusions drawn from the results arc detailed in the works of Key (1984).
Atluri (1984b), Nagtegaal and de Jong (1982). Lee t!1 (If (1983). and Dafalias (1983).

The same solutions can be obtained also for the Sowerby-Chu (1984) and Durban­
Baruch (1977) stress rates that haw been published in recent years. For analysis of the
results so obtained, these solutions will be compared with existing solutions for stress rates.

The present work contains this comparison for the case of simple shear using clastic.
clastic-perfectly plastic. clastic-plastic isotropic. kinematic. anu combined isotropic-kine­
matic hardening models.

In the lirst part of this paper. the stress rates and their derivation arc reviewed. A
unified formulation of the stress rates and a new stress rate definition arc given.

The second part contains solutions for simple shear. For the clastic case. the solutions
can be obtained analytically while in the clastic-perfectly plastic case. the relationships lead
to one- or two-dimensional differential equations. For the clastic-plastic hardening material.
the isotropic. kinematic. and combined model can be described by means of a nine­
dimensional differential equation system. Kinematic hardening is taken into consideration
by usc of the Prager model. No approximations arc contained in the relationships derived.
The system of differential equations is solved numerically using the fourth-order Runge­
Kulta method. Some conclusions can be drawn from the evaluation of the obtained results
that may contribute to the synthesis of stress rates.

Finally. the constitutive equations are analysed. The new derivation rule is used to
develop a rate form of the Doyle-Ericksen formula and a new constitutive equation for
hypoclastic materials.
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STRESS RATES

The most important stress rates fulfilling the physical objectivity for Cauchy's stress
tensor t are given in Table l. Notations used in Table 1 are as follows: n, material time
derivative, L. velocity gradient tensor: L = FF - I, where F is the deformation gradient
tensor. 0 the strain rate of deformation : 0 = !(L+ LT

), \V the spin tensor: W = !(L-LT
),

fi the rate of the rotation tensor: fi = RR r. where R is the orthogonal tensor in polar
decomposi tion

F = RU = VR (1)

ofdeformation gradient F. V and V are the right and left stretch tensors. fiE the spin tensor:
fiE = RER~. where REis the diagonal transformation of stretch tensor V

(2)

and;' the diagonal tensor containing the eigenvalues of V.
For the stress rates listed in Table 1 the following definitions are known, The Truesdell

(1955) time derivative. llsing the KirchhotT stress tensor
• I .. ·~-· ----,,_.
t= F(F ItF-')FT (3)

J

where t = Jt. J = del (1'), or brietly, with the second Piola-KirchhotT stress tcnsor

The laurnann (1911) rale can be produced as the averagc of the Oldroyd (1950) rate

~ 'It = t-Lt-tL

and lhe Cotter-Rivlin (1955), or convected slress rale

t = t+ L't+tL

as
v __

t = Ht+t).

(4)

(5)

(6)

(7)

The Green-Naghdi (1965). or Green-Mclnnis (1967). or Dienes (1979), stress ratc can be
written as

Truesdell

Jaumann

Green NaghJi,
Green -Mcinnis,

Dienes

Sowerhy·-Chu

Duroan·- Baruch

Tahle I

i = i-Lt-ILT +t Ir (0)
v ,
1= I-WI+IW

i = i-Url+tUr

t = i-(lo+Wlt+UW-!Ol+ttr(O)

(8)
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or briefly, with Cauchy's rotated tensorT = RTtR

The definition of the Sowerby-Chu (1984) time derivative is

281

(9)

(10)

The Durban-Baruch (1977) (natural) stress rate can be produced as the average of the
Truesdell rate. and of the Jaumann rate of the Kirchhoff stress tensor

N 1(0 Iv)
t = 2 t+ Jf . (II)

Remark J. A rather elegant way to derive stress rates is given by Marsden and Hughes
(1983) and Simo and Marsden (1984). Using the Lie derivation, the stress rates described
above can be produced. The Lie derivation on the covariant coordinates of the stress tensor
results in the Cotter-Rivlin rate. The Oldroyd rate can be obtained using the Lie derivation
on the contravariant stress coordinates.

A connection cun be established between the Sowerby-Chu and the Green-Naghdi
stress rates. A relation betwccn fiE and fi is givcn by (Chu, 1986)

(12)

where

and RI. is a diagonallransformation of tensor U

(13)

Using elln (12)

(14)

The $owcrby--Chu derivative of Cauchy's rotated stress tensor T, in terms of tensor fit,
takes the following shape:

.
T = t-fitT+Tfit .

Using elln (15)

Equation (16) is equivalcnt to eqn (14), because

(15)

(16)

i = RTR r = R(T-fitT+TfidR-r = RTRT-RfilRTRTRT+RTRTRfilRT

=~ -RfilRTt+tRfilRT •

Thc definitions of stress rates can be illustrated by means of Fig. I showing con­
figurations CR and Cv resulting from polar decomposition of deformation gradient (I) as
well as configurations C.l O and C.l t associated with the diagonal transformation of tensors
U and V. For example the Truesdell, Oldroyd, and Cotter-Rivlin rates can be produced by
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Fig. I. Schematic representation of configurations.

the following steps: (i) a transformation of (instantaneous) configuration C, into the (initial)
configuration Cn; (ii) ditTerentiation with respect to time; (iii) retransformation. The Green­
Naghdi. or Dienes rate and the Sowerby-Chu rate can be derived in a similar way but by
transformation into configuration CR and CA,. respectively. instead of Cn• Configurations
Cyand Co have not yet been applied for the derivation of stress mtes. It can be shown in
the case of configuration Cy that the derivation procedure previously described leads to
loss of physical objectivity. However. configuration CAO results in objective stress rates by
means of the following new derivation rule.

(i) First transform .1 tensor (stress. strain. etc.) from the spatial configuration C, into
configuration Cv• then transform it into configuration Co'

(ii) Differentiate it with time.
(iii) Retransform it in the opposite direction as described in (i).

Using this derivation rule on the contravariant or covariant Cauchy stress tensor t. the
following new stress rates are obtained

(17)

( IH)

where

( 19)

Proposition J. The average of stress rates tE and i E gives the Sowerby-Chu stress rate

(20)

Proo! To accept this, it is enough to prove

(21)

where ( )A denotes the antisymmetric part of eqn (19).
With eqn (12) substituted into eqn (19) for LE we obtain

(22)

The relationships
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L = VV-I+VQV- I

and

found by Sowerby and Chu (1984) and Chu (1986) help to prove eqn (21).
Substituting eqn (23) into eqn (22) we obtain

The antisymmetric part ofeqn (25) is

Comparing eqn (24) with eqn (26) it follows that
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(23)

(24)

(25)

(26)

o (27)

A lumped representation of part of the stress rates is possible using a formula intro­
duced by Hill (1970)

_ v

t = t-m(Dt+tO). (28)

Equation (28) yields the Jaumann rate in the case of m =O. the Oldroyd rate for m == t.
while the Cottcr-Rivlin mtc for m == - I. When the right-hand side ofeqn (28) is completed
with the term t tr (0), the Truesdell rate is obtained for m == I while the Durban-Baruch
rate is obtained for m == 1/2.

Another generalil.ation of stress rates was given by F'ressengeas and Molinari (1983).
They used the relationship given by Mandel (1973) for the directional derivative of the
deformation gradient

u
F = F-QoF.

The stress rate was written as

where

(29)

Equation (29) gives the Jaumann rate for v = I and the Green-Naghdi rdte for II =O.
Taking the Sowerby-Chu derivative as a starting point and using eqn (12). a new

generalization of the strcss rates is possible:

The above relationship yields the Green-Naghdi rate for a "'" 0 and the Sowerby-Chu rate
for a = 1.

Investigation of the expressions for stress rates discussed in this work shows that any
of them can be given in the following general form :

i = i-2(At}s (30)
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Table 2

Stress rates

Truesdell

Oldroyd

Cotter-Rivlin

Jaumann

Durban- Baruch

Green-Naghdi

New stress rate. eqn (17)

New stress rate. eqn (18)

Sowcrby-Chu

.-\

L-~ltr(J))

L

_L r

w

~J) + W -ll tr J)

n
L, = "y -,+ vnE V '

- L~ = - V ',- + V - 'n, V

n E

where ( >s denotes the symmetric part. Taking the objectivity condition for t as a starting
point. the transformation rule

A = QAQr +QQr (3 I)

can be derived for quantity A, where Q is an arhitrary orthogonal tensor. Hence, a physically
objective stress rate can be produced with any A transformahle according to eqn 0 I).

Quantities A, associated with the stress rates investigated, arc given in Tahle 2.

COMPARISON OF STRESS RATES IN TilE CASE OF SIMPLE SIiEAR

Slress raIl'S in simple shellr
For simple shear, the motion can be given in the following well-known form:

(2)

On the basis of cqns (32), the kinematic ljuantities required for the stress rates given in
Table I are

L ~e[~
I

~l ["
I

;;J(;

0 0=2 ~ 0

0 0 0

W ~;[ - r
1 n ["

1

"J0 n=IJ -I 0 0

0 () 0 0

fi, ~ ~[ - r
I

HII = tan - I (i); "i:
0 II = -,--:_-.

e-+4
0

Non-zero clements of stress rates for simple shear can be summed up as

i'l = t'l

(33)

(34)

(35)
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Table 3

Stress rates c, c,

Truesdell -2 0

Jaumann -I 1

4 4
Green-Naghdi - e'+4 e'+4

2 Z
Sowerby--chu - e'+4 e'+4

Durban-Baruch -l

Parameters c, and C2 are included in Table 3.

Elastic solution
For the elastic solution, the simple hypoelastic relation has been used

i = 2JID+).I tr D

(36)

(37)

where JI and A. are Lame constants and i is one of the stress rates.
Except for the Sowerby-Chu and the Durban -Baruch stress rates, exact solutions arc

given by Moss (1984), Atluri (1984b). and Dienes (1979). These solutions.•lIong with
analytical solutions for the two derivatives mentioned above. arc given in Table 4.

Elastic-plastic solution
The clastic-plastic solution is based on the PrandtlReuss equation in the case of

combined isotropic-kinematic hardening. Kinematic hardening is .Issurned 'Iccording to
the Prager model. The constitutive equation on the basis of Hughes (19X4) is

Table: 4

True:sde:1I

Jaumann

Green-Naghdi

Sowcrby-Chu

Durban-Baruch

I" = I,e'; I" = I" = 0
I" = I'l'

I" = -I" = I,(I-cos (I'll
I" = I' sin k) ; 11.I = 0

I" = 41'[cos (2/1) In (cos /1) +Psin (2/1) - sin' /11
I" = 21' cos (2/1)[2/1- 2 tan (2P) In (cos /1) - tan /1)
1))=0; 1"=-1,,

[ (
sin (/1) + I) ]

I" = 21' sin (P) In------. +cos (pj-I
cos ({I)

[ (
Sin (m + I) ]

I" = 21' cos (p) In cos (fJ) + t;1ll (pj- sin (Pl

I JJ = 0; I" = -I"
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. H' H'
k = fJ k(3;+ H') s: 0 - fJ 1k(3J.L+ H') s: [f(t) f(x)]

k= ../ns:s)
s = s - x. i = t - x

f(t) = i-i. f(x) = i-x

(40)

s is the deviatoric stress tensor. QC the "back-stress" tensor. fJ the parameter determining the
proportion of isotropic and kinematic hardening. and H' the slope of the "true stress
logarithmic plastic strain curve" in a uniaxial tension experiment.

Remark 1. If in eqn (30) tensor A is skew symmetric then the last terms vanish on the
right-hand s,ide of eqns (38)-(40).

Remark 3. When deriving eqns (38)-(40) the material derivative is used in the con­
sistency condition of the yield surl:lce. For other stress rates (including Oldroyd and Cotter­
Rivlin derivatives) the objective stress was used in the consistency condition by Atluri
(1984b). Consequently in the constitutive equations. cqns (38)-(40). the last terms arc
missing. Detailed analysis is given in Szabt) (1988).

With constitutive equations. eqns (38)- (40). applied to simple shear and compared
with eqns (33)·(36). the following dillcrential equation system consisting of nine equations
is ootained :

[
- B - - ]j,,=,; [JII,§,,-C'C(I'- §"/I,(.i'II+I,,)(CI+C:)•. . • - . - '2Jl' - - --

(41 )

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)
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Remark 4. Apparently if CI +C2 = O-which holds for stress rates with skew tensor
A-then the last tenns in eqns (41)-(49) vanish.

The differential equation system, eqns (41 )-(49), is solved numerically, using the classic
fourth-order Runge-Kutta method in the next paragraph. Solutions for the elastic-perfectly
plastic case (H' = 0) lead to simpler differential equations.

Table 5 shows the equations obtained by Moss (1984) for the laumann. Truesdell, and
Green-Naghdi rates. Table 5 also contains the equations for the Sowerby-Chu and Durban­
Baruch derivatives that have not been published (to the author's knowledge).

In Table 5. auxiliary variable (J is defined by

SII = ko sin (} and SI2 = ko cos (}

where k(l is the yield point associated with pure shear.

Nllmerical reslilts
Numerical calculations were made first for the elastic case. Figures 2 and 3 show the

change of dimensionless stresses t 12/11 and 111/11. calculated on the basis of relationships
given in Table 3, as a function of e/2.

Results for the elastic-perfectly plastic case are illustrated in Figs 4 and 5. the curves
resulting from the numerical solutions of dilTerential equations given in Table 5. For the
sake ofcompatibility with the results of Moss (1984), the dimensionless values ofdeviatoric
stress components arc illustrated. A value k,,/II = 0.0577, used also by Moss (1984), has
been used in the calculations.

Values of stresses obtained for clastic-isotropic hardening arc illustrated in Figs 6 and
7 (II = I). while the change of stress component 112 in the neighborhood of clastic-plastic
transition is shown magnified in Fig. 8.

Figures 9 -II apply to elastic-plastic kinematic hardening ({1 = 0).

Table 5

Truesdell

d/" [2 I (/ 22 11)]-:," = k o sin 0 eos 0 - sin 0+ - - + -
ut' 3 J3 ko ko

Jaumann

Green -Naghdi

Sowcrby-Chu

Durban··Baruch

dO 11
--- = I - - sin 0
dt' k.

dO 4 11
--- = -- - - sin 0
de e2 +4 k.

dO 2 11
- = -,- - --- sin 0
de e'+4 k.

dO 13 5.. sin 0(211 III)
de = 2J(39) + 2J(39) SID' 0- 2 ~ + k.

dill [3 35.. 7 (211 I)]-d = k. cos 0 ;; + - SID" 9- -- sin 0 - +-'..!.
e I. 78 2J(39) k. k.
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Solutions. illustrated in Figs 12 and IJ. arc obtained f(lr comoined isotropic -kinematic
hardening (fl = 0.5). using material properties It = XOOOO M £la. /l'lIt = 0.1. k u/;t = 0.0577
for the hardening models.
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As Figs 2 and .3 illustrate, the Durban Baruch derivative displays oscillating properties
similar to the Jaumann derivative. A comparison of the Sowerby Chu and Grcen-Naghdi
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derivatives shows that the Sowerby -Chu rate results in a smaller normal stress therefore
the curve of stress component II! which is closer to the linear characteristic than the Green ­
N,tghdi rate.

With the calculations reproduced. the solutions for the clastic perfectly plastic case
(Figs 4 and 5) contain also the results of Moss (19X4). Moss was the lirst to lind for the
Truesdell, Green-Naghdi. ,lI1d Jaumann stress rates that instability occurred in stress
components II! in the clastic -plastic transition for the clastic-perfectly plastic case.
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Fig. 6. Shear stress vs shear strain: clastic-plastic isotropic hardening material.

The Durban--Baruch derivative shows also instability. Least instability is found for the
Sowerby··Chu rate from among the stress rates investigated.

The shear stress is appro:<imatcly linear for all five derivatives in the elastic plastic.
isotropic hardening case (Fig. 6). However. it magnilied representation of the section of
elastic-plastic transition (Fig. 8) shows slight instability for the derivatives e:<cept for the
Sowerby·-Chu rate. It can be seen in Fig. 7, illustrating the change of stress t'l' th'lt the
curves for the Durban-Baruch and Truesdell stress rates are very steep.

As has been found by different authors (Nagtegaal and de long. 1982: Key. 1984;
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Fig. 7. Normal stress vs shear strain: elastic-plastic isotropic hadening material.
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representation of the section of the elaslie-plaslic transition).

Johnson and Dammann. 1984; Alluri. I984b ; Dafalias. 1983; Lee et 01.• (983) the solutions
show an oscillating behaviour for the Jaumann derivative in the case of elastic-plastic.
kinematic hiudening. As compared with the Grcen-Naghdi derivative. the Sowerby-Chu
derivative results in it solution closer to linear in stress ' 12• With the section ofelastic-plastic
transition in Fig. 9 magnified. a slight instability can be experienced in the solutions also
in this case. except for the Sowerby-Chu ratc. This phenomenon has not been dctected by
calculations made on the basis of a rigid -plastic model. Results differing from the solutions
illustrated in the figures are obtained also in approximate calculations where the total strain
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rate is used instead of the plastic one to produce the rate of the "back-stress" tensor (AtJuri,
11)84b). Very steep curves arc obtaine:d for the Durban -Banu.:h and Truesdell derivatives
in normal stresses also in this model, similar to isotropic hardening.

Results obtained for combined hardening appear as the: average of solutions associated
with isotropic and kine:matic hardening when IJ = 0.5 as shown also by a comparison of
J-'igs6,9, 12,and 7,10,13 .
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Fig. II. Shear stress vs shear strain: clastic-plastic kinematic hardening material (a magnified
representation of the section of the elastic-plastic transition).
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CONSTITUTIVE RELATIONS

The simple clastic shear W.IS analysed by eqn (37). Many authors showed that the
Jaumann stress rate results in residual stresses for a closed strain path (Kojic and Rathe.
1987; Kleiber. 1986). Lately the application of the Green Naghdi stress rate has been
preferred inste'ld of that of Jaumann (Flanagan and Taylor. 1987; Hughes. 1984; Johnson
and Hammann. 1984; Kim .lI1d Oden. 1985). Bul Simo und Pister (1984) pointed out
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Fig. 13. Normal stress vs shc.. r strain: elastic-plastic comhined isotropic-kinematic hardening
material.
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that neither the use of Jaumann nor Green-Naghdi stress rates in eqn (37) gives elastic
characteristics.

It was apparent from the comparison of stress rates that the Sowerby-Chu rate gives
acceptable results (there are no oscillation and instability at the elastic-plastic limit).

For simple elastic shear the following solution was given (HaJleux and Danca. 1985):

. (sin (fJ) + I)
til = -t~~ = 2J.l Sin (fJ) In ---­

cos (fJ)

(
sin (fJ) + I)

t I! = 2/1 cos (fJ) In cos (fJ) . (50)

This solution is given on Figs 2 and 3 for comparison with others. It is also included in the
solution for the Sowerby-Chu stress rate (see row 4 on Table 3). The only differences are
the last two terms which are multiplied by II. This fact indicates that the right-hand side of
eqn (37) must be modified in order to obtain solution (50).

The Doyle-Ericksen formula for hyperelastic materials is (see p. 204 of Marsden and
Hughes ( 1983))

(51 )

where'" is the free energy. Po the density in reference configuration Co. and g the spatial

metric tensor.

Proposition 2. Denoting the symmetric part of 1.1'. by

(52)

and using the new derivation rule on both sides of the (spatial) Doyle Ericksen formula

(51) we obtain

(53 )

Proo/ [I' the new derivation rule is applied to the Doyle-Ericksen formula. then

(54)

As g is given in covariant coordinates (g"b)

(55)

Since g = O. therefore

(56)

By substituting eqn (56) into eqn (54) we obtain eqn (53). 0
Equation (53) is the new rate form of the Doyle-Ericksen formula.
The use of logarithmic strain has appeared recently in the constitutive equations of

elastic and elastic-plastic materials (Bathe et al.. 1985; Halleux and Donca. 1985).

Proposition 3. The relation between DE and logarithmic strain In V is
~."'-

DE = In V (57)
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-L
where In V is the Sowerby-Chu rate offn V relative to the Eulerian triad

-L _.~

In V = In V- nl! In V+In V nil'

Proof Chu (1986) gives the expression for L as (see eqn (37) ofChu (1986»

----.L-
L = In v+ne-FnlF- 1

•

Substituting eqn (58) into eqn (25) we obtain

from which. as eqn (27) holds. thus

295

(58)

(59)

~"'-
(Le)s = In V =De. o (60)

Equation (53) is analogous with the Lie derivative of eqn (51) given by Simo and
Marsden (1984) and Marsden and Hughes (1983)

(61 )

As the stress i is conjugate to the strain rate Din cqn (61), iii is conjugate to the logarithmic
strain rute DE in eqn (53). If these conjugate pairs are used in eqn (37), respectively, the
s:llne solution for simple shear is obtained (first row of Table 4). On the other side eqn (61)
includes the J:lumann rate analogous with

(62)

where C is the constitutive tensor. It follows from eqn (62) for simple hypoelastic materials
that

(63)

which gives solution (50) for simple shear. Many authors (Hoger, 1987; Atluri. 1984a)
showed that t and In V are conjugate stress and strain measures in the isotropic elastic case.
Atluri (1985) gave the simple hypcrelastic relation between 1: and In V in the form of

t' = 21lln V +).1 tr (In V). (64)

Using the Sowerby-Chu derivation on both sides ofeqn (64), eqn (63) is obtained. Equation
(63) is the physically objective rate form of eqn (64) on configuration Ct.

The solution to the differential equation for simple shear

(65)

received from eqn (63), is also identical to eqn (50). However, eqns (50) can be obtained
directly from eqn (64).

Equation (63) on configuration Cll is

or in another form

. . .
R~t'RE = 2pln V+11 tr <In V) (66)
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.
RI.R; = 2/lil 1+i.I tr (i;.- I). (67)

Halleux and Donea (1985) solved eqn (67) in a geometric way and then transformed the
solution on the instantaneous (C,) configuration. This procedure leads to eqns (50).

Finally we note that among the stress rates considered in Table 4. only the Truesdell
(first row) and solution (50) satisfy the local universal relation obtained by Wineman and
Gandhi (1984) for isotropic. elastic simple shear

(68)

CO:-.iCLUSI01"S

A new derivation rule was introduced. by means of which two objective stress rates
(eqns (17) and (18) were derived.

As the Jaumann rate is equal to the average of the Oldroyd and Cotter-Rivlin rates.
likewise the Sowerby -Chu rate is the average of the two new stress rates (20).

The new derivation rule was applied to the hyperelastic Doyle~Erickscn formula.
resulting in a new rate form. In this rate form. the new stress rate (17) is conjugate to the
Sowerby Chu derivative of the logarithmic left stretch tensor. in the current state.

Furthermore. the paper compares some stress rates for simple shear. The comparative
investigations showed similarity between the Durban Baruch and Jaumann stress rates on
the one hand. and between the Sowerhy Chu and Green Naghdi stress rates on the other.
It was shown that the different rates result in dill'crent behaviour. Usually it is questionahle
whidl rale can he used in a constitutive equation. It was shown that for simple shear the
Sowerhy (,hu rate gives acceptahle results.

Starting from this observation a new constitutive equation for hypoclastic materials
was given which includes the Sowerhy Chu stress rate. The new equation leads to the
known solution for simple shear.
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